
Audacious Goals Initiative (AGI) - Retina
The Audacious Goals Initiative (AGI) for Regenerative Medicine is an effort by the National Eye Institute (NEI) to push the boundaries of vision science and restore vision through regeneration of the retina. By facilitating cross-disciplinary research, we are tackling the most devastating and difficult-to-treat eye diseases.
Loading Visualizations
Objective: to identify genes that are differentially expressed in retinal ganglion cells undergoing axon regeneration after optic nerve injury. RGCs were treated with pro-regenenerative treatment after optic nerve injury. The treated RGCs were selected by FACS...
Retinal Regeneration Single Cell of Chick Trajectory of Müller Glia in Response to NMDA/GF Treatment
Injury induces retinal Müller glia of certain cold-blooded vertebrates, but not those of mammals, to regenerate neurons. To identify gene regulatory networks that reprogram Müller glia into progenitor cells, we profiled changes in gene expression and chromatin...
Injury induces retinal Müller glia of certain cold-blooded vertebrates, but not those of mammals, to regenerate neurons. To identify gene regulatory networks that reprogram Müller glia into progenitor cells, we profiled changes in gene expression and chromatin...
Injury induces retinal Müller glia of certain cold-blooded vertebrates, but not those of mammals, to regenerate neurons. To identify gene regulatory networks that reprogram Müller glia into progenitor cells, we profiled changes in gene expression and chromatin...
The ability to regenerate retinal neurons after injury varies drastically among vertebrate species. Teleost fish such as zebrafish can regenerate all major retinal cell types after injury by reprogramming Müller glia to a progenitor-like state. In the post-h...
Injury induces retinal Müller glia of certain cold-blooded vertebrates, but not those of mammals, to regenerate neurons. To identify gene regulatory networks that reprogram Müller glia into progenitor cells, we profiled changes in gene expression and chromatin...
Injury induces retinal Müller glia of certain cold-blooded vertebrates, but not those of mammals, to regenerate neurons. To identify gene regulatory networks that reprogram Müller glia into progenitor cells, we profiled changes in gene expression and chromatin...
Injury induces retinal Müller glia of certain cold-blooded vertebrates, but not those of mammals, to regenerate neurons. To identify gene regulatory networks that reprogram Müller glia into progenitor cells, we profiled changes in gene expression and chromatin...
Injury induces retinal Müller glia of certain cold-blooded vertebrates, but not those of mammals, to regenerate neurons. To identify gene regulatory networks that reprogram Müller glia into progenitor cells, we profiled changes in gene expression and chromatin...